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Summary

• This report evaluates several observational scenarios in terms of their performance
in a data assimilation system. In the construction of these observational scenarios
we emphasise the Copernicus Sentinel satellites with particular focus on the High
Priority Candidate Missions (HPCMs) for the expansion of the Sentinel fleet. One
group of scenarios consists of observations of the Arctic sea ice-ocean system,
while another group consists of observations of atmospheric CO2.

• We employ the quantitative network design (QND) approach to assess the
impact of these scenarios in a mathematically rigorous fashion through the
reduction of uncertainties in a set of relevant target quantities. For the sea
ice-ocean observations, our target quantities are 1-week to 4-week forecasts of
sea ice volume (SIV) and snow volume (SNV) for selected regions along the
Northern Sea Route and the Northwest Passage as well as for the entire Arctic.
Our assessments assume observations are assimilated in April 2015, with the
respective 1-week and 4-week forecasting periods starting on May 1. For the
atmospheric CO2 observations, our target quantities are the land-based fossil
fuel emissions in the first week of June from several Arctic countries, namely
Canada, Denmark, Finland, Island, Norway, and Sweden.

• As our focus is on the observational scenarios and model error is an aspect that is
specific to our model and difficult to specify, we deliberately exclude it from the
assessments (together with biases in the observations). For example, we assume
that the penetration of radar and laser signals is treated correctly. The exclusion
of model error emphasises the differences between observational scenarios and
shows the upper limit for the impact that each scenario can achieve. We do,
however, complement our assessments with estimates of the impact of model
error on the simulated target quantities. As our reference is a prior case without
any observations, the impact of a given observational data stream is also much
higher than in a setup where it is added to an assimilation system that already
assimilates a variety of other data sets, as it is the case for the Copernicus systems.

• Sentinel 3 (S3) radar freeboard (RFB) outperforms CryoSat-2 (CS-2) RFB in the
selected target regions relevant for marine transportation in the Arctic because
of the higher temporal coverage. The larger pole hole of S3 is irrelevant. While
this is trivial for the selected target regions relevant for shipping (too far away),
S3 outperforms CS-2 as well for the Arctic-wide assessment.

• When combined with CS-2 RFB, CIMR-like and CRISTAL-like snow depth
(SND) products yield strong gain in forecast performance. The same holds for a
typical product based on an atmospheric reanalysis. Although the differences
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Summary

for these assessments are small, for the respective accuracies we have assumed
CIMR shows the best performance among the three products.

• The combination of CS-2 RFB and ICESat2-like laser freeboard (LFB) shows the
overall best performance for both, SIV and SNV. This is because the assumed
accuracy of the LFB (2 cm) was higher than the accuracy of the SND products.
Furthermore, assimilation of the raw freeboard product is more beneficial than
the assimilation of a derived product.

• The performance of a CIMR-like SST product is better than that of a traditional
infrared-based SST product. Although the infrared product is more accurate,
the better spatial coverage (owing to its capability to penetrate clouds) renders
CIMR attractive for predicting SIV and SNV along the shipping routes. We note
that only CIMR and only over the target region in the Baffin Bay shows a strong
impact, because for the other regions and the infrared the SST observations are
too far away. The impact of SST is expected to be higher for Summer conditions
when most of the target regions are at least partially ice-free.

• Assessments of several observational scenarios for atmospheric CO2 in terms of
their constraint on land-based fossil fuel CO2 emissions in June show that an
increase in the number of sites of a small surface network providing continuous in
situ samples is more efficient than the reduction of its observational uncertainty or
the addition of radiocarbon measurements. Further, combining the small surface
network with a single CO2M satellite already provides a better constraint on land-
based fossil fuel CO2 emissions in June than increasing the number of continuous
sampling sites.

• The provision of spatial and temporal uncertainty correlations with the EO
products would be beneficial not only for QND assessments, but also for the
assimilation of the products.

• The QND approach is ideally suited to assist the formulation of mission
requirements or the development of EO products. In an end-to-end simulation
it can translate product specifications in terms of spatio-temporal resolution
and coverage, accuracy, and precision into a range of performance metrics.
Alternatively, it can translate requirements on forecast performance into
requirements on the respective observables. It can assess combinations of in situ
and EO data (from multiple missions). This type of assessment can be
performed for higher-level products (e.g. SIT or SIC) but also for rawer
products (e.g. freeboard or brightness temperature).
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1 Observational Scenarios

Forecasts of the sea ice and the ocean state are routinely performed by coupled sea
ice-ocean models that are driven by prescribed atmospheric conditions. To derive
reliable forecasts, uncertainties in the models’ initial state, the atmospheric boundary
conditions, and in the parameterisations of physical processes need to be minimised.
Observations can help to reduce such uncertainties and, thus, to improve the forecast
quality.

For example, the Copernicus Arctic Marine Forecasting Centre (ArcMFC) is
currently running its real-time forecasting system at a resolution of 12 km regionally
and assimilates

• in situ data T and S (Argo, ITPs) in situ TAC (thematic assembly centre),

• SST (OSTIA),

• along-track sea level anomaly (AVISO/CMEMS),

• SIC (OSI-SAF),

• SIT (SMOS), and

• SI drift (OSI-SAF)

over an assimilation window of 7 days to produce forecasts with a lead time of 10 days.
The Copernicus Global Marine Forecasting Centre (GloMFC) system is currently

running at Mercator at a resolution of 8-9 km (1/12 degree) and assimilates

• in situ data T and S (Argo),

• SST (OSTIA),

• along-track sea level anomaly (AVISO/CMEMS), and

• SIC (OSI-SAF)

over an assimilation window of 7 days to produce forecasts with a lead time of 10 days.
The forecasts that are currently running at ECMWF use resolutions of 9-36 km of

the atmospheric component and 0.25◦ of the ocean component and are based on the
assimilation of the following oceanic variables:

• in situ profiles of T and S,

• SST (OSTIA),

• along-track sea level anomaly (AVISO/CMEMS), and
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1 Observational Scenarios

• SIC (OSTIA)

over an assimilation window of 5 days to produce forecasts with lead times from 10
days to 13 months. Within the Copernicus Climate Change Service (C3S) this is
complemented with seasonal forecasts by the systems from Météo-France, the UK Met
Office, DWD, CMCC, and NCEP.

This report evaluates several observational scenarios in terms of their performance
in a data assimilation system. In the construction of these observational scenarios
we emphasise the Copernicus Sentinel satellites with particular focus on the High
Priority Candidate Missions (HPCMs) for expansion of the Sentinel fleet. Our first
two observational scenarios address altimetric measurements from the CryoSat-2 (CS-
2) and the Sentinel 3 (S3) missions. We focus on radar freeboard (RFB) products,
because a preceding study (Kaminski et al., 2018) had identified RFB as the data
product with the highest impact compared to Sea Ice Thickness (SIT) or Sea Ice
Freeboard (SIFB) products.

The next set of scenarios also builds upon a finding of Kaminski et al. (2018) which
had indicated good complementarity of RFB with snow depth (SND) products. We
hence constructed three hypothetical SND products and evaluated them in combination
with the CS-2 RFB product. The first SND product is intended to look like an SND
product to be expected from the Copernicus HPCM CRISTAL (Copernicus Polar Ice
and Snow Topography Altimeter). The second SND product is intended to look like an
SND product to be expected from the Copernicus HPCM CIMR (Copernicus Imaging
Microwave Radiometer). The third SND product is intended to look like an SND
product to be expected from a modelling approach that combines with the help of
a numerical snow model an ice drift product with output from a numerical weather
prediction model to calculate the temporal evolution of SND. A CRISTAL SND product
would be derived from the difference of two freeboard measurements onboard the same
platform (Ku-Ka band). An alternative is the direct assimilation of two freeboard
products into the model. For this purpose we constructed an LFB product that looks
like an ICESat-2 product, which we also evaluated in combination with CS-2.

A further observable we evaluate is SST. Our traditional scenario is based on the
product retrieved by OSI-SAF from infrared (IR) measurements, and is contrasted with
a scenario that uses an SST product to be expected from the HPCM CIMR.

For land, our observational scenarios focus on the detection of land-based fossil
fuel emissions from Arctic countries with atmospheric CO2 observations. We first
assess a small surface network of 15 sites providing continuous in situ samples, and
then four scenarios that extend/improve this network. The first scenario equips many
more sites that are currently providing flask samples with continuous in situ analysers.
The second scenario adds radiocarbon observations to the 15-site network. The third
scenario employs the 15-site network with reduced observational uncertainty. The
fourth scenario combines the 15-site network with a single satellite of the planned
HPCM CO2M (Copernicus Anthropogenic Carbon Dioxide Monitoring) Mission.
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2 Approach

2.1 Introduction

The quantitative network design (QND) approach allows for an objective evaluation
of the added value of observations for a given aspect of a model simulation or
forecast. The technique originates from seismology (Hardt and Scherbaum, 1994) and
was first applied to the climate system by Rayner et al. (1996), who optimised the
spatial distribution of in situ observations of atmospheric carbon dioxide to achieve
minimum uncertainty in inferred surface fluxes. After an initial QND study that
demonstrated the feasibility of the approach for remote sensing of the
column-integrated atmospheric carbon dioxide concentration (Rayner and O’Brien,
2001) QND is now routinely applied in the design of CO2 space missions (e.g., Patra
et al., 2003; Houweling et al., 2004; Crisp et al., 2004; Feng et al., 2009; Kadygrov
et al., 2009; Hungershoefer et al., 2010; Rayner et al., 2014; Bovensmann et al., 2015).

For the western Arctic domain, the QND approach has been successfully applied to
evaluate the impact of (hypothetical) airborne measurements of SIT/SND in improving
sea ice predictions (Kaminski et al., 2015). The study evaluated two idealised flight
transects derived from NASA’s Operation IceBridge airborne altimeter ice surveys in
terms of their potential to improve ten-day to five-month forecasts of sea ice conditions,
including for operational purposes. The study by Kaminski et al. (2018) presents QND
assessments of the impact of various sea ice thickness and freeboard and snow depth
remote sensing products on the performance of forecasts of ice and snow volume along
the Northern Sea Route.

For the land surface Kaminski et al. (2010) apply the QND approach to assess the
impact of measurements of atmospheric CO2 in a Carbon Cycle Data Assimilation
System (CCDAS Rayner et al., 2005). Kaminski et al. (2012) presented an interactive
Mission Benefit Analysis System that applies the QND approach to assess the impact
of in situ samples of atmospheric CO2 and other observations in a CCDAS.

2.2 Methods

2.2.1 Quantitative network design

The QND methodology is presented by Kaminski and Rayner (2017), partly based on
Tarantola (2005) and Rayner et al. (2019). To keep it concise we provide a shortened
form of the presentation by Kaminski and Rayner (2017). QND is a generic concept
that is applicable beyond the context of Arctic modelling (see examples in Section 2.1),
It is, hence, useful to provide a generic presentation in this subsection. The specific
elements of our application will be described in the subsequent subsections.
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2 Approach

As mentioned, the QND formalism performs a rigorous uncertainty propagation from
the observations to a target quantity of interest relying on the indirect link from the
observations to the target variables established by a numerical model. We distinguish
between four sources of uncertainty in a model simulation:

1. Uncertainty caused by the formulation of individual process representations and
their numerical implementation (structural uncertainty).

2. Uncertainty in constants (process parameters) in the formulation of these
processes (parametric uncertainty).

3. Uncertainty in external forcing/boundary values (such as surface winds or
precipitation) driving the relevant processes.

4. Uncertainty in the state of the system at the beginning of the simulation (initial
state uncertainty).

The first category reflects the implementation of the relevant processes into the model
(code) while the others can be represented by a set of input quantities controlling the
behaviour of a simulation using the given model implementation. The QND
procedure formalises the selection of these input quantities through the definition of a
control vector, x. The choice of the control vector is a subjective element in the QND
procedure. A good choice covers all input quantities with high uncertainty and high
impact on simulated observations dmod or target quantities y (Kaminski et al., 2012;
Rayner et al., 2019).

Figure 2.1: Data flow through the two-step procedure of QND formalism. Oval boxes
denote data, rectangular boxes denote processing. “Backward propagation
with inverse model” implements Equation (2.1), and “forward propagation
with model” implements Equation (2.3). Figure is taken from Kaminski
and Rayner (2017).

The target quantity may be any quantity that can be extracted from a simulation
with the underlying model (in the current study regional integrals of predicted sea ice
and snow volumes and fossil fuel emissions, see Section 2.2.2), but also any component
of the control vector, for example, a process parameter such as the snow albedo. In
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2 Approach

the general case, where the target quantity is not part of the control vector, the QND
procedure operates in two steps (Figure 2.1). The first step (inversion step) uses the
observational information to reduce the uncertainty in the control vector, i.e. from a
prior to a posterior state of information. The second step (prognostic step) propagates
the posterior uncertainty forward to the simulated target quantity.

Within the QND formalism, we present all involved quantities by probability density
functions (PDFs). We typically assume a Gaussian form for the prior control vector
and the observations, if necessary after a suitable transformation. The Gaussian PDFs’
covariance matrices express the uncertainty in the respective quantities, i.e. C(x0) and
C(dobs) for the prior control vector and the observations. In the context of these PDFs
we will use the term uncertainty to refer to its full covariance matrix in the case of
a vector quantity, and in the case of a scalar quantity or a given vector component,
it refers to the square root of the entry on the diagonal of the full covariance matrix
corresponding to that particular vector component. In the latter case, the uncertainty
refers to one standard deviation of the marginal PDF corresponding to that component,
and we use the notation σ(d2) to denote, for example, the standard deviation of the
second component of d.

For the first QND step, we use a mapping M from control variables onto equivalents
of the observations. In our notation the observation operators that map the model state
onto the individual data streams (see Kaminski and Mathieu (2017) and Section 2.2.5)
are incorporated in M . M is in practice computed by a specific numerical model with
specific inputs and outputs. Let us first consider the case of a linear model, for which
we denote by M′ the Jacobian matrix of M , i.e. the derivative of M with respect to
x. In this case, the posterior control vector is described by a Gaussian PDF with
uncertainty C(x), which is given by

C(x)−1 = M′TC(d)−1M′ + C(x0)
−1 , (2.1)

where the data uncertainty C(d) is the combination of two contributions:

C(d) = C(dobs) + C(dmod). (2.2)

The term C(dobs) expresses the uncertainty in the observations and C(dmod) the
uncertainty in the simulated equivalents of the observations M(x). The first term in
Equation (2.1) expresses the impact of the observations and the second term the
impact of the prior information. In the non-linear case we use Equation (2.1) as an
approximation of C(x).

The mapping N involved in the second, the uncertainty propagation step, is the
mapping from the control vector onto a target quantity, y. The Jacobian matrix N′ of
the mappingN is employed to approximate the propagation of the posterior uncertainty
in the control vector C(x) forward to the uncertainty in a target quantity, σ(y) via

σ(y)2 = N′C(x)N′
T

+ σ(ymod)
2 . (2.3)

If the model were perfect, σ(ymod) would be zero. In contrast, if the control variables
were perfectly known, the first term on the right-hand side would be zero. The terms
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C(dmod) in Equation (2.2) and σ(ymod) in Equation (2.3) capture the structural
uncertainty as well as the uncertainty in those process parameters, boundary and
initial values that are not included in the control vector. These two terms typically
rely on subjective estimates. When comparing the effect of different data sets in the
same setup, σ(ymod) acts as an offset (for the respective variance) in Equation (2.3).
For each observational scenario, we evaluate Equation (2.3) with σ(ymod) set to zero,
which sharpens the contrast between the products. For the sea ice-ocean assessments
we also report a plausible estimate of σ(ymod).

To conduct a valuable QND assessment, the requirement on the model is not that it
simulates the target quantities and observations under investigation realistically, but
rather that it provides a realistic sensitivity of the target quantities and observations
under investigation with respect to a change in the control vector. (As a hypothetical
example we can think of a perfect regional tracer model that is run with an offset in the
initial or boundary conditions for a passive tracer. The simulated tracer concentration
will carry this offset, but all sensitivities will be perfect.) If the sensitivities of the
target quantities and observations (i.e. the Jacobians) are realistic, but the simulation
of target quantities and observations is incorrect, we can always obtain a valuable
QND assessment with appropriate model uncertainty. The result of the assessment
may then be that a particular data stream is not useful in constraining a particular
target quantity given current modelling capabilities. Under such circumstances, the
QND system could be operated with reduced model uncertainty to explore the level of
accuracy required of the model for a data stream to serve as a useful constraint on a
given target quantity. In particular when it comes to newly available, unvalidated data
streams and target quantities the accuracy of both, the simulation and the sensitivities,
is hard to assess. In the case of a model that does not capture relevant processes we
may expect errors in both the simulation and the sensitivities, and consequently also
in the QND assessment.

Our performance metric is the (relative) reduction in posterior target uncertainty
σ(y)2 with respect to a reference. To compare against the case without any observations
we first compute, as the reference, the prior target uncertainty, σ(y0), via

σ(y0)
2 = N′C(x0)N

′T + σ(ymod)
2 . (2.4)

The uncertainty reduction with respect to the prior,

σ(y0)− σ(y)

σ(y0)
= 1− σ(y)

σ(y0)
, (2.5)

quantifies the impact of the entire network. A schematic illustration of the approach
with the prior and posterior uncertainty ranges is shown in Figure 2.2. The observations
d1 and d2 render a range of trajectories unlikely, which in the first step (Equation (2.1))
leads to a reduction of uncertainty in the control vector (from C(x0) to C(x)) and in
the second step (Equation (2.3)) to a reduction in the target uncertainty (from σ(y0) to
σ(y)). Note that the model trajectories in Figure 2.2 are for illustration purposes only;
the algorithm employs the linearisations M ′ and N ′ for the uncertainty propagation.
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2 Approach

Figure 2.2: Schematic presentation of the QND procedure: Each coloured line
illustrates a model trajectory that simulates for a given value of the control
vector (x) counterparts of the observations (d1 and d2) and a target quantity
(y). Through the model, the observations act as constraints on the control
vector, which reduces its uncertainty from C(x0) to C(x). This uncertainty
reduction on the control vector translates into an uncertainty reduction in
the target quantity from σ(y0) to σ(y).

We note that (through Equation (2.1) and Equation (2.3)) the posterior target
uncertainty solely depends on the prior and data uncertainties, the contribution of
the model error to the uncertainty in the simulated target variable, σ(ymod), as well
as the observational and target Jacobians (quantifying the linearised model responses
of the simulated observation equivalent and of the target quantities). Hence, the
QND formalism can be employed to evaluate hypothetical candidate networks.
Candidate networks are characterised by observational data type, location, sampling
frequency and time, and data uncertainty but not the observational value. Here, we
define a network as the complete set of the characterisation of observations, d, used
to constrain the model. The term network is not meant to imply that the
observations are of the same type or that their sampling is coordinated. For example,
a network can combine different types of in situ and satellite observations.

In practice, for pre-defined target quantities and observations, model responses can
be pre-computed and stored. A network composed of these pre-defined observations
can then be evaluated in terms of the pre-defined target quantities without any further
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2 Approach

model runs. Only matrix algebra is required to combine the pre-computed sensitivities
with the data uncertainty. This aspect is exploited in our QND system.

For the land-based fossil fuel emissions, our inverse problem is characterised by a
high-dimensional control vector combined with an observation vector of an even larger
dimension. As a consequence, the size of M ′ is too large to solve Equation (2.1)
on our computer. Hence, as Rödenbeck (2005), we restrict ourselves to the iterative
computation of posterior uncertainties for several selected target quantities, which are
described in Section 2.2.2.
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2 Approach

2.2.2 Target quantities

Figure 2.3: Target regions along the NSR and in the Northwestern Sea Route. Black
cross indicates a location for further use in Figure 2.17.

For this study, we selected two sets of target quantities, y. The first set is
particularly relevant for maritime transport, namely predicted sea ice volume (SIV)
and snow volume (SNV) over three regions along the NSR, and two regions in the
Northwestern Sea Route. These five regions are displayed in Figure 2.3 and
respectively denoted as “West Laptev Sea” (WLS), “Outer New Siberian Islands”
(ONSI), “East Siberian Sea” (ESS), “Beaufort Sea” (BFS), and “Baffin Bay” (BAB).
As an additional target region we use the entire Arctic basin. We perform these
predictions for May 28, 2015, a point in time at which there is still sufficient snow
cover for our prediction to be relevant. We have two different assimilation windows
(Figure 2.4). For freeboard/ice thickness/snow depth products we assimilate an
average field over April, followed by a four-week forecast. For SST we assimilate an
average field over the first week of April, followed by a seven-week forecast.

The second set of target variables are the land-based fossil fuel emissions from several
Arctic countries, namely Canada, Denmark, Finland, Island, Norway, and Sweden (see
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Figure 2.4: Time line of assimilation and forecast setups for freeboard/snow depth
products (top) and SST (bottom).

Figure 4.2). We compute these for the first seven days in June 2008 by a sectorial
fossil fuel emission model, which is described in Section 2.2.4. The chosen period
is of particular interest because of the strong influence of biospheric fluxes during
the growing season on atmospheric CO2. In contrast to the sea ice-ocean setup, our
observational constraint over land covers the target period, i.e. no prediction is made.
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2.2.3 Sea ice-ocean model

To simulate observation equivalents (M in Equation (2.1)) and target quantities (N in
Equation (2.3)) we employ a coupled model of the sea ice-ocean system. The model
is required to provide realistic simulations of the sensitivity of observation equivalents
and target quantities to changes in the control variables. In the present study we
use the Max-Planck-Institute Ocean Model (MPIOM, Jungclaus et al., 2012, 2013;
Haak et al., 2003), i.e. the sea ice-ocean component of the Max-Planck-Institute Earth
System Model (MPI-ESM, Giorgetta et al., 2013). MPI-ESM regularly provides climate
projections for the Intergovernmental Panel on Climate Change (IPCC) in particular
to the IPCC’s 5th assessment report (Stocker et al., 2013) and the upcoming 6th
assessment report (AR6) and within the seasonal to decadal prediction system (Müller
et al., 2012). In the following, we provide a brief description of the current model
development status, largely following Jungclaus et al. (2006) and Niederdrenk (2013).

The recent development of the ocean part of the model includes the treatment of
horizontal discretisation which has undergone a transition from a staggered E-grid to
an orthogonal curvilinear C-grid. The treatment of subgrid-scale mixing has been
improved through the inclusion of a new formulation of bottom boundary layer slope
convection, an isopycnal diffusion scheme, and a Gent and McWilliams style
eddy-induced mixing parameterisation (Gent and McWilliams , 1990).
Along-isopycnal diffusion is formulated following Redi (1982) and Griffies (1998).
Isopycnal tracer mixing by unresolved eddies is parameterised following Gent et al.
(1995). For the vertical eddy viscosity and diffusion the Richardson
number–dependent scheme of Pacanowski and Philander (1981) is used. An
additional wind mixing proportional to the cube of the 10-m wind speed (decaying
exponentially with depth) compensates for too low turbulent mixing close to the
surface. Static instabilities are removed through enhanced vertical diffusion.

Viscous–plastic rheology (Hibler , 1979) is used for the sea ice dynamics. Also, the
parametrisation of the ice strength P is taken from Hibler (1979). We introduce it here
explicitly for later reference:

P = hiccp · hi · exp(−hibcc · (1− c)), (2.6)

where c denotes SIC, hi SIT, and the parameters hiccp and hibcc are also known as
pstar and cstar (see Table 2.1).

Sea ice thermodynamics are formulated using a Semtner (1976) zero-layer model
relating changes in sea ice thickness to a balance of radiant, turbulent, and oceanic
heat fluxes. In the zero-layer model the conductive heat flux within the sea ice/snow
layer is assumed to be directly proportional to the temperature gradient across the sea
ice/snow layer and inversely proportional to the thickness of that layer, i.e. the sea ice
does not store heat. The effect of snow accumulation on sea ice is included, along with
snow–ice transformation when the snow/ice interface sinks below the sea level because
of snow loading (flooding). The effect of ice formation and melting is accounted for
within the model assuming a sea ice salinity of 5g/kg.

MPIOM allows for arbitrary placement of the model’s poles on an orthogonal
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curvilinear grid. In the setup used here (taken from Niederdrenk (2013); Mikolajewicz
et al. (2015); Niederdrenk et al. (2016)) the poles are located over Russia and North
America (Figure 2.5). Placement over land avoids numerical singularities that for
poles over the ocean would be caused by the convergence of the meridians, and the
non-diametric placement allows to reach high resolution (average of about 15 km) in
the Arctic. This setup achieves a spatial resolution as high as that of the sea ice
thickness and freeboard products we analyse (in fact over the target regions the
model resolution is higher) without major computational constraints, which allows an
evaluation of the full spatial information content provided by the respective EO
products. Here, we will refer to this particular model configuration as Arctic MPIOM.

As forcing data at the ocean’s surface, the model needs heat, freshwater, and
momentum. These data are taken from ECMWF’s ERA-Interim reanalysis (Dee
et al., 2011). ERA-Interim is a global atmospheric reanalysis (of the period from 1979
to present) that is produced by a 2006 release of the Integrated Forecasting System
(IFS – version Cy31r2) and applies a 4-dimensional variational analysis with a
12-hour analysis window. The spatial resolution of the data set is approximately
80km (T255 spectral) on 60 vertical levels from the surface up to 0.1hPa.
ERA-interim surface variables that force Arctic MPIOM are 2-meter temperature,
2-meter dew point temperature (a surrogate of 2-meter specific humidity – not
provided by ECMWF), 10-meter zonal and meridional wind velocity (to calculate the
wind speed), total cloud cover and the following fluxes (provided in accumulated form
over the 12-hourly forecast window): surface downward solar radiation, surface
downward thermal radiation, total precipitation, zonal and meridional wind stress.
Land runoff into the ocean is taken from the German Ocean Model Intercomparison
Project (OMIP, Röske, 2001).

For the computation of the Jacobians M ′ and N ′ (introduced in Section 2.2.1) that
is described in Section 2.3 we run Arctic MPIOM from a restart file for April 1, 2015.
This restart file is in turn generated from a hindcast run of Arctic MPIOM that is
initialised on January 1, 1979. This initialisation is based on a set of observations that
consists of a topography data set (ETOPO5 5-minute gridded elevation data, NOAA,
1988), and a hydrographic climatological data set (Polar science center Hydrographic
Climatology, PHC3; Steele et al., 2001) containing potential temperature and salinity.
The ocean initially is assumed to be at rest. Sea ice is assumed to be present if the sea
surface temperature falls below the freezing temperature of sea water. 100% ice cover
and a sea ice thickness of 2m is assumed where sea ice is present and sea ice is assumed
to be at rest. From this initial state the model is integrated with the ERA-Interim
surface forcing until March 31, 2015 (the beginning of our assimilation window). While
a 36-year integration is certainly too short to spin up the deep ocean, it is sufficient
for this study, because the spinup time of sea ice and the upper ocean (depth above
about 500m) is generally assumed to be only a few decades.

For a successful QND assessment it is essential that MPIOM provides realistic
sensitivities of the observation equivalent and the target quantities to the changes in
the control vector (Equation (2.1) and Equation (2.3)). However, observations are
not available to validate these sensitivities. The only validation of MPIOM possible is
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Figure 2.5: Model grid, mesh indicates groups of 4 by 4 grid cells.

against observations of the state of the sea ice and ocean. In the following we present
comparisons with selected observation-based products first for the hindcasting period,
and then for the assimilation window and the forecasting period.

The hindcast with Arctic MPIOM has been validated against remotely sensed ice
concentration from the reprocessed Ocean and Sea Ice Satellite Application Facility
(OSI-SAF) sea ice concentration product (Eastwood et al., 2015) and against a
combination of in situ and remotely sensed ice thickness observations. In situ
observations of sea ice thickness still have high uncertainty, and each data source has
its strengths and weaknesses. As of today the most reliable pan-Arctic sea ice
thickness data set is derived from a combination of various sources of in situ
observations and remotely sensed satellite sea ice thickness products (Lindsay and
Schweiger , 2015).

The reprocessed OSI-SAF sea ice concentration product is available daily on a 10km
spatial grid and includes spatially and temporally varying uncertainty estimates. For an
assessment of the performance of the Arctic MPIOM, the sea ice concentration has been
compared to the long-term means of the March, June, and September monthly means
for the period 1990 to 2008 (Figure 2.6). In March (panel d) and June (panel e) only
relatively small scale misfits to the OSI-SAF ice concentration are found but they can
reach up to 50% (here and in the following we use the term for the model-observation
difference). The sea ice margin in the Nordic Seas and the Barents Sea is captured well.
The anomalies apparent in March correspond to the results of a study performed with
the MPIOM version of the Max-Planck-Institute’s Earth System model MPI-ESM-LR
(Notz et al., 2013), for which the MPIOM was forced with the same atmospheric forcing
data set as used in our study (ERAinterim) (see panel f of their Figure 3). In September
large misfits to the OSI-SAF sea ice concentration are obtained (Figure 2.6 panel f).
Especially over the Eurasian basin the model’s sea ice margin is located too far north,
but also over the central Arctic the model underestimates the sea ice concentration. In
our target regions the misfit remains relatively small. The aforementioned analysis by
Notz et al. (2013) shows similar misfits (see panel f of their Figure 4) to a different sea
ice concentration data set, namely NSIDC-CDR (National Snow and Ice Data Center
Climate Data Record).
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Figure 2.6: Long-term mean sea ice concentration [%] of the Arctic MPIOM for 1990
to 2008 for March, June and September (panel a to c) and the misfit to
the OSI-SAF sea ice concentration (panel d to f). In panels d to f, red
colours indicate underestimation and blue colours overestimation of sea ice
concentration in the model.

An evaluation of the hindcast simulation with Arctic MPIOM with respect to the
modelled SIT is much more difficult because the observation-based products exhibit
large uncertainties reflecting the corrections imposed by the respective measurement
principle. For example, electro-magnetic Air-EM measurements detect the air-snow
interface, and not the interface between snow and sea ice, introducing significant errors
in the SIT estimates that are corrected by assumptions or measurements of snow depth.
Moored and submarine ULS measurements have to be corrected for the first return
echo. Differences in the observed and measured spatial scales further complicate the
comparison. The aforementioned study of Lindsay and Schweiger (2015) synthesises
all available in situ and remotely sensed satellite SIT products in an ice thickness
regression procedure (ITRP) for the period from year 2000 to 2012. Low order spatial
and temporal polynomials are fitted to the available sea ice thickness measurements.
The resulting sea ice thickness regression product describes the evolution in the central
Arctic and is linear in time plus a quadratic time-dependent component, i.e. it does not
contain year-to-year variability. Uncertainty ranges are deduced from the uncertainty
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of the individual regression coefficients. The year-to-year variability is reflected in
this uncertainty. Lindsay and Schweiger (2015) show for example that the ICESat
ice thickness product from the Jet Propulsion Laboratory (ICESat-JPL, Kwok and
Cunningham (2008)), which is widely used for model validation, has a large positive
bias of about 40cm. Here we compare the modelled long-term mean (2000 to 2012)
sea ice thickness of the Arctic MPIOM hindcast to the ITRP sea ice thickness for
the two-months periods February/March and October/November. We selected these
two-month periods because the availability of the ICESat satellite product ensures
high data coverage in the ITRP. The long-term mean sea ice thickness of the Arctic
MPIOM hindcast simulation for February/March and October/November is depicted
in Figure 2.7 (panel a and panel b) together with the misfit to the ITRP ice thickness
(panel c and panel d). A prominent feature is a strong underestimation of the Arctic
MPIOM sea ice thickness north and west of Fram Strait and in the strait itself. In
the target areas along the NSR and the target region in the Beaufort Sea the misfit
is moderate in February/March (overestimation of about 25%) with the exception
around the New Siberian Islands where the misfit can reach more than one meter
(overestimation of about 50%). In October/November the misfit is very moderate in
these areas except for Bering Strait where Arctic MPIOM underestimates the sea ice
thickness by more than 50cm. In the Baffin Bay, no sea ice thickness situ data entered
the ITRP.

Next, we address Arctic MPIOM performance over our assimilation and forecasting
period (see Figure 2.4). We show the April mean and the May 28 mean of the
modelled SIT and the misfit of the April mean thickness to that retrieved from
CryoSat-2 (Figure 2.8). For a comparison of CryoSat-2 thickness to in situ
observations we refer to Haas et al. (2017). The misfit to the CryoSat-2 ice thickness
in April 2015 is similar to the misfit to the ITRP shown in Figure 2.7: a strong
underestimation north of the Canadian Archipelago and north and west of Fram
Strait and a moderate overestimation in the area of the target quantities of about or
less than 50cm (about 25% relative error). Figure 2.9 depicts the April mean and the
May 28 mean of the modelled snow depth and the misfit to the modified Warren
climatology (Warren et al., 1999) that is used in the CryoSat-2 retrieval (see
Section 2.2.5). The main challenge for sea ice thickness retrieval with satellite
altimeters is the parameterisation of snow depth on sea ice, which is still not
measured routinely. The current CryoSat-2 retrieval uses a modified snow
climatology that addresses shortcomings of the Warren et al. (1999) climatology that
was based largely on data from drifting stations mainly on multi-year sea ice collected
over the past decades, and hence is not reflective of a much younger, more seasonal
Arctic ice cover. Given the increased fraction of first-year ice in the Arctic Ocean, the
approach proposed by Kurtz and Farrell (2011) is used and the climatological snow
depth values used in the retrieval are multiplied over first-year ice by a factor of 0.5.
Note that on May 28 over the target regions a large fraction of snow cover has
already melted. The misfit to the modified Warren climatology in the target area
East Siberian Sea is on the order of about 10cm (50% relative error) but much less
for the other target areas.
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Figure 2.7: Long-term mean (2000 to 2012) of the simulated sea ice thickness [m] for
the two-month periods February and March and October and November
(panel a and b) and the misfit (model – observations) to the ITRP (panel
c and d). In panels c and d, red colours indicate underestimation and blue
colours overestimation of sea ice thickness in the model.

Overall, the misfits of the Arctic MPIOM are acceptable in particular for our target
regions along the NSR and the Northwestern Sea Route (Figure 2.3) and are comparable
to misfits found in sea ice-ocean model intercomparison projects (e.g, Chevallier et al.
(2017)).

The criteria for the choice of the control vector are presented in Section 2.2.1. The
specification of prior, both mean (x0) and uncertainty (C(x0)), follows Kaminski
et al. (2015), and is listed in Table 2.1. The largest possible control vector in our
modelling system is the superset of initial and surface boundary conditions as well as
all parameters in the process formulations, including the observation operators. As
described in Section 2.3, the Jacobian computation requires an extra run for each
additional component of the control vector. To keep our QND system numerically
efficient, two and three-dimensional fields are partitioned into regions. More precisely,
we divide the Arctic domain into nine regions (shown in Figure 2.10). In each of
these regions we add a scalar perturbation to each of the forcing fields (indicated in
Table 2.1 by “f” in the type column); the perturbation is applied for the entire
simulation time. Likewise, we add a scalar perturbation to six initial fields indicated
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Figure 2.8: a) The modelled mean April 2015 sea ice thickness [m], b) the modelled
sea ice thickness on May 28 2015, and c) the mean April 2015 misfit
of the modelled sea ice thickness relative to the CryoSat-2 sea ice
thickness. In panel c, red colours indicate underestimation and blue colours
overestimation of sea ice thickness in the model.

in Table 2.1 by “i” in the type column. For the ocean temperature and salinity the
size of the perturbation is reduced with increasing depth (and zero below 500m).
Finally, we have selected 29 process parameters from the sea ice–ocean model plus
two parameters from the observation operators for freeboard products (see
Section 2.2.5 for details). This procedure results in a total of 157 control variables.
We assume the prior uncertainty to have diagonal form, i.e. there are no correlations
among the prior uncertainties relating to different components of the control vector.
The diagonal entries are the square of the prior standard deviation. For process
parameters this standard deviation is estimated from the range of values typically
used within the modelling community. The standard deviation for the components of
the initial state is based on a model simulation over the past 37 years and computed
for the 37 member ensemble corresponding to all states on the same day of the year.
Likewise, the standard deviation of the surface boundary conditions is computed for
the 37 member ensemble corresponding to the April-October means of the respective
year.
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Table 2.1: Control variables. Column 1 lists the quantities in the control vector;
column 2 gives the abbreviation for each quantity; column 3 indicates
whether the quantity is a process parameter (“p”), an initial field (“i”),
or an atmospheric boundary field (denoted by “f” for forcing); column 4
gives the name of each quantity; column 5 indicates the prior uncertainty
(one standard deviation) and the corresponding units (unless unitless) and
provides the mean parameter value in parenthesis, where applicable; and
column 6 identifies the position of the quantity in the control vector – for
initial and boundary values (which are differentiated by region) this position
refers to the first region, while the following components of the control vector
then cover regions 2 to 9.

Index # Name Type Meaning Prior uncertainty (Mean) Start

1 hiccp p (alias pstar) ice strength (devided by density) 15(20) [N/m2/kg] 1
2 hibcc p (alias cstar) ice strength depend. on ice conc. 5.0(20.0) 2
3 hicce p (alias eccen) squared yield curve axis ratio 0.5(2.0) 3
4 rlc1 p extra lead closing (Notz et al., 2013) 0.2(0.25) 4
5 rlc2 p extra lead closing (Notz et al., 2013) 1.0(3.0) 5
6 rlc3 p extra lead closing (Notz et al., 2013) 1.0(2.0) 6
7 h0 p lead closing 1.0(0.5) [m] 7
8 hmin p mimimal ice thickness 0.04(0.05) [m] 8
9 armin p minimal ice compactness 0.15(0.15) 9
10 hsntoice p limit on flooding 0.45(0.45) 10
11 sice p salinity in sea ice 2.0(5.0)[g/kg] 11
12 albi p freezing ice albedo 0.1(0.75) 12
13 albm p melting ice albedo 0.1(0.70) 13
14 albsn p freezing snow albedo 0.1(0.85) 14
15 albsnm p melting snow albedo 0.1(0.70) 15
16 rhoice p density of sea ice 20(910)[kg/m3] 16
17 rhosn p density of snow 20(330)[kg/m3] 17
18 cw p ocean drag coefficient 2.0 × 10−3(4.5 × 10−3) 18
19 av0 p coefficient vertical viscosity 1. × 10−4(2. × 10−4)[m2/s] 19
20 dv0 p coefficient vertical diffusitivity 1. × 10−4(2. × 10−4)[m2/s] 20
21 aback p background coefficient vertical viscosity 3. × 10−5(5. × 10−5)[m2/s] 21
22 dback p background coefficient vertical diffusitivity 1. × 10−5(1.05 × 10−5)[m2/s] 22
23 cwt p vertical wind mixing parameter tracers 2.0 × 10−4(3.5 × 10−4)[m2/s] 23
24 cwa p vertical wind mixing parameter momentum 0.4 × 10−3(0.75 × 10−3)[m2/s] 24
25 cstabeps p vertical wind mixing stability parameter 0.03(0.06) 25
26 cdvocon p coefficient for enhanced vertical diffusivity 0.1(0.15) 26
27 bofric p linear bottom friction 2. × 10−4(3. × 10−4)[m2/s] 27
28 rayfric p quadratic bottom friction 0.5 × 10−3(1. × 10−3)[m2/s] 28
29 jera p jerlov atten - ocean-water types 0.04(0.08) 29
30 jerb p jerlov bluefrac - ocean-water types 0.20(0.36) 30
31 albw p open water albedo 0.05(0.1) 31
32 SIT i initial ice thickness 0.5 [m] 32
33 SIC i initial ice concentration 0.1 41
34 SND i initial snow thickness 0.2 [m] 50
35 TEMP i initial ocean temperature 0.5 [K] (vertically decreasing) 59
36 SAL i initial salinity 0.5 [g/kg] (vertically decreasing) 68
37 SLH i initial sea level elevation 0.08 [m] 77
38 CLD f cloud cover 0.07 86
39 PREC f total precipitation 0.4 × 10−8 [m/s] 95
40 SWR f solar downward radiation 6. [W/m2] 104
41 TDEW2 f 2 m dew point temperature 1.1 [K] 113
42 TEMP2 f 2 m air temperature 1.2 [K] 122
43 WND10 f 10m scalar wind speed 0.6 [m/s] 131
44 WIX f zonal wind stress x component 0.02 [Nm2] 140
45 WIY f meridional wind stress y component 0.02 [Nm2] 149
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Figure 2.9: a) The modelled mean April 2015 snow depth [m], b) the modelled
snow depth on May 28 2015, and c) the mean April 2015 misfit of the
modelled snow depth relative to the modified Warren climatology used in
the CryoSat-2 sea ice thickness retrieval. In panel c, red colours indicate
underestimation and blue colours overestimation of snow depth in the
model.
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Figure 2.10: Sub-regions for spatial differentiation of initial and boundary values in
the control vector. 1 (light plum): central Arctic; 2 (dark blue): North
Atlantic; 3 (blue) Barents Sea; 4 (light blue) Kara Sea; 5 (green) Laptev
Sea, 6 (light green) East Siberian Sea; 7 (yellow): Bering Strait/Chukchi
Sea; 8 (orange): Beaufort Sea; 9 (red): Baffin Bay.
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2.2.4 Modelling Chain for Atmospheric CO2

For the simulation of atmospheric CO2 we use a modelling chain that combines
models of land-based fossil fuel emissions and natural surface fluxes with an
atmospheric transport model to simulate atmospheric CO2 concentrations. The
transport model together with the atmospheric CO2 data sets are described in
Section 2.2.6. This modelling chain relies on pre-existing components and was
developed in the ESA-funded Carbon Cycle Fossil Fuel Data Assimilation
(CCFFDAS) study (http://ccffdas.inversion-lab.com/).

The objective of the Copernicus HPCM CO2M, which aims at observing total column
CO2 concentrations, is to constrain fossil fuel emissions of CO2, in particular to assist
the verification of the Paris agreement. Here we analyse the constraint of CO2M and
the surface in situ network to constrain the sectorial national total fossil fuel emissions
for a set of Arctic countries (see Section 2.2.2).

For the fossil fuel emissions, we use the model underlying the Fossil Fuel Data
Assimilation System (FFDAS) by Asefi-Najafabady et al. (2014), which defines two
sectors: a power generation sector and all other emissions denoted as the “other”
sector. Through the Kaya identity (Nakicenovic, 2004) the emissions F from the
other sector at a point x in country c are given by

F (x, c) = pP (x)g(x)ef(c) (2.7)

where lower case variables denote elements of the control vector (see Table 2.2). In
summary, these are a scalar multiplier for the population density (p), a pointwise
estimate of the per capita GDP (g(x)), a global constant for the energy intensity of the
economy (e), and a per-country estimate for the carbon intensity of energy production
(f(c)). For the carbon intensity we apply an uncertainty of 10 times it’s prior value
(denoted as f0 in Table 2.2) with a floor value of 10−6 kgC/MJ. P (x) is the population
density. The population dataset is based on the gridded population density provided
by the LandScan Global Population Database (Bhaduri et al., 2007).

We use nightlights as an additional observation to constrain the fossil fuel emissions
model. The data originate from the Defense Meteorological Satellite Program (DMSP)
and are archived by the US National Oceanic and Atmospheric Administration at the
National Geophysical Data Center (NGDC) (http://ngdc.noaa.gov/eog/index.html).
At NGDC nightlights for the years 2006 and 2010 are available. We used the products
for these two years and applied a linear interpolation to obtain nightlights for our study
year 2008.

Uncertainties in the nightlight observations arise from errors in the instrument as
well as from aggregating the native 30“ observation to the 0.1◦ grid used here. To
estimate these uncertainties we use the same approach as in Asefi-Najafabady et al.
(2014), given by

σNL = (0.5 + 0.1xNL)1.25 (2.8)

where xNL is the observed nightlight value. The uncertainty is inflated by 25% (the
factor 1.25 in Equation (2.8)) to allow for interpolation error.
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For the power generation sector we use the emissions from a list of power plants
in each country. As in Asefi-Najafabady et al. (2014) emissions associated with each
power plant were mapped onto the FFDAS grid based on the power plant location
and assigning the emission value to the entire grid cell with no subgrid cell spatial
distribution. When location information was not available for a power plant, the power
plant emissions were proportionally distributed to the rest of the grid cells containing
power plants in that country. Control variables in the power generation sector are the
emissions from each listed power station (see Table 2.2). These emissions are based on
the CARMA database (see http://carma.org).

Uncertainties on the CARMA power plant emissions are estimated from the
average of the reported standard error from plants listed in the US Energy
Information Administration and/or the US EPA Clean Air Market datasets. For a
detailed description of the emission and emission uncertainty estimates from the
world’s power plants we refer to the supporting material of Asefi-Najafabady et al.
(2014). We use a floor value of 0.01 MtC for the prior uncertainty of an individual
power plant. This results in relative prior uncertainties well above 100% for small
power plants. Using this procedure, for four countries (China, India, South-Africa,
and USA) the prior uncertainties aggregated to country-scale were below the
uncertainty that Asefi-Najafabady et al. (2014) assume for the national totals
provided by the International Energy Agency (IEA; International Energy Agency
(2011)). In each of these four countries the prior uncertainty for each of the power
plants were upscaled to match the uncertainty in the national total.

Table 2.2: List of control variables for the fossil fuel emissions model.

Description Symbol Resolution Prior Uncertainty
Per capita GDP g gridcell 1.25 dollar/yr/person
Energy intensity e global 10−6 MJ/dollar
Carbon intensity f country max(10f0, 10−6kgC/MJ)
Population density scaling p global 10−6

Nightlight scaling n global see Equation (2.8)
Power plant emissions (CARMA) u individual power plants see text

The terrestrial biosphere model we used to calculate the natural terrestrial CO2

exchange fluxes is conceptionally similar to the one used by Kaminski et al. (2002)
and based on Knorr and Heimann (1995). The model was previously employed for the
assimilation of column integrated atmospheric CO2 (XCO2) (Kaminski et al., 2017a) in
a Carbon Cycle Data Assimilation System (CCDAS). It operates on a 0.5◦ global grid
and divides the global terrestrial biosphere into 8 land cover classes (in the following
also referred to as Plant Functional Types, PFTs) based on the MODIS land cover
classification (Friedl et al., 2010) (see Figure 2.11):

1. cropland/urban/natural vegetation mosaic,
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Figure 2.11: PFT groupings by land cover classes cropland/urban/natural vegetation
mosaic, needle-leaf forest, broadleaf forest, mixed forest, shrubland,
savanna, tundra, barren/sparsely vegetated.

2. needleleaf forest,

3. broadleaf forest,

4. mixed forest

5. shrubland,

6. savanna or grassland,

7. tundra,

8. barren or sparsely vegetated.

The model calculates the uptake of CO2 by photosynthesis (expressed as Net Primary
Productivity, NPP) using a light-use efficiency approach:
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NPP(x, t) = ε · α(x, t) · FAPAR(x, t) · srad(x, t) (2.9)

where ε denotes the PFT-specific light-use efficiency parameter, α a water stress
factor, FAPAR the fraction of absorbed photosynthetically active radiation, and srad
the incident solar radiation driving photosynthesis.

Heterotrophic respiration Rhet is calculated following a Q10 functional relationship
with temperature T and is, as the photosynthesis calculation, modulated by the water
stress factor:

Rhet(x, t) = n(x) · α(x, t) ·QT/10
10 (2.10)

The PFT-specific parameter Q10 expresses the ratio of respiration at T + 10 to that
at T, with T measured in ◦C. The control variables for the terrestrial biosphere model
component are the parameters ε and Q10 (see Table 2.3). The spatially varying
normalisation factor n(x) is the ratio of the temporal integrals of NPP(x, t) and
Rhet(x, t) computed for prior parameter values over the entire model simulation
period from 2004 to 2008. The normalisation factor thus ensures a balanced prior
biosphere over the model simulation period but allows for non-zero posterior net flux.
This is different from the study by Kaminski et al. (2002) which assimilated the
observed seasonal cycle and enforced an annually balanced posterior biosphere.

In summary, the model uses as driving data global fields of temperature, FAPAR,
and the water stress factor. The temperature fields are taken from the CRU data set
(Harris et al., 2014) and the plant water-stress factor, taken as monthly climatological
AET/PET (actual divided by potential evapotranspiration) values per grid-cell, is
computed with the BETHY model of Knorr (2000) for the years 1989 to 2012 using
the same CRU data set to provide meteorological input data for BETHY. We use
the FAPAR product (Pinty et al., 2011) derived with JRC-TIP (Pinty et al., 2007)
directly on the 0.5◦ model grid, to avoid significant errors which would be imposed by
spatial aggregation of the FAPAR product derived on a finer grid; for details we refer
to Kaminski et al. (2017b).

Table 2.3: List of control variables for the terrestrial biosphere fluxes model.

Description Symbol Resolution Prior Uncertainty
Light use efficiency ε PFT 100% of prior
Respiration relation to temperature Q10 PFT 100% of prior

Emissions from biomass burning are derived from a combination of burned area data
provided by Chuvieco et al. (2016) with Giglio et al. (2013) and exchange fluxes with
the ocean from a combination of Takahashi et al. (1999) climatology with interannual
variability taken from Buitenhuis et al. (2010), as described in Kaminski et al. (2017a).
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The values for the prior model parameters (ε and Q10) have been selected such that
they are consistent with XCO2 observations obtained from GOSAT Kaminski et al.
(2017a). Their relative prior uncertainties were set to 100%.
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2.2.5 sea ice-ocean data sets and observation operators

The AWI (Ricker et al., 2014) retrieves radar freeboard, sea ice freeboard, and sea
ice thickness products from observations provided by the CryoSat-2 mission. Of these
variables, a preceding QND study (Kaminski et al., 2018) identified radar freeboard
(RFB) as the one with the highest impact. We thus use AWI’s RFB data set as
the starting point for our assessments. In addition we evaluate several snow-on-sea-
ice (snow depth, SND) data sets, a laser freeboard (LFB) data set, a data set that
characterises the RFB information to be expected from Sentinel 3 (S3), and SST data
sets. Below, we describe these data sets and the simulation of their model equivalents,
i.e. the respective observation operators that provide the links from the model’s state
variables to the respective data sets (Kaminski and Mathieu, 2017). Recall that the
(combination of) data set(s) enters the QND algorithm through its uncertainty C(d)
and that the observation operator is incorporated in the model M (see Section 2.2.1).

Figure 2.12: Schematic illustration of sea ice thickness and different freeboard variables.

The three products derived by AWI from CryoSat-2 are SIT (hi), SIFB (fi), and
RFB (fr). Their definition is illustrated in Figure 2.12 together with that of LFB (fl).
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Figure 2.13: Overview on the processing chain for CryoSat-2 (CS) product retrievals
(left-hand side) and the chain for modelling product equivalents from
the control vector (M(x), right-hand side). Oval boxes denote data
and rectangular boxes processing steps. Green colour emphasises remote
sensing products and violet colour model variables. Yellow diamonds mark
the assessment of the EO products with the QND algorithm. MSS: mean
sea surface height.
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The retrieval chain is described in detail by Ricker et al. (2014) and Hendricks
et al. (2016). Recall that for each product, to run an assessment, we need the
spatio-temporal coverage as well as the uncertainty ranges. The left-hand side of
Figure 2.13 summarises the main steps in the retrieval chain, starting with the rawest
(lowest-level) product (RFB) on top. When descending from RFB via SIFB to SIT
each step adds further assumptions, which contribute to the product uncertainty. The
other element required to evaluate a given product is the observational Jacobian
(M ′), i.e. the sensitivity of the model simulation to a change in the control vector.
The right-hand side of the graph illustrates how the equivalents of the respective
products are simulated from the relevant model variables, which are denoted in violet
colour. On this side of the graph, the complexity increases from bottom to top, i.e.
from SIT via SIFB to RFB. For example, in the assessment of the SIT product, the
uncertainty in quantities needed to apply the Archimedes’ principle to the ice floe
(including that of snow depth derived from climatology) is contained in the retrieval
product, whereas the observation operator that extracts the product equivalent from
the model is relatively simple (Archimedes’ principle is described, for example, by
Guerrier and Horley (1970)). We note that, while retrieved SIT is the effective SIT
(hi,eff ), i.e. refers to the average over the ice-covered area of a grid cell, simulated
SIT refers to the grid-cell average, i.e. for the Jacobian calculation it has to be
divided by the simulated sea ice concentration (SIC, denoted by c):

hi,eff = hi/c. (2.11)

Likewise for snow depth:
hs,eff = hs/c. (2.12)

At the level of RFB, by contrast, it is the observation operator that includes on
the modelling branch, the application of Archimedes’ principle for which it requires
simulated snow depth and the densities of snow (ρs), sea ice (ρi), and water (ρw),
while the retrieval product is relatively raw. In particular this retrieval product is not
affected by uncertainties due to assumptions concerning the snow depth, ρs, ρi, and
ρw.

The observation operators for fi, for fr, and for fl are:

fi = hi/c− (ρihi/c+ ρshs/c)/ρw

= (1− ρi/ρw)hi/c− (ρs/ρw)hs/c (2.13)

(2.14)

fr = fi − 0.22hs/c

= (1− ρi/ρw)hi/c− (0.22 + ρs/ρw)hs/c (2.15)

fl = fi + hs/c

= (1− ρi/ρw)hi/c+ (1− ρs/ρw)hs/c. (2.16)

The term −0.22hs/c in Equation (2.15) adds to the simulated fi the correction for
the difference in propagation speed of the radar signal in snow compared to air, which
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is affecting fr (Hendricks et al., 2016). This is the reason why fr is located below fi in
Figure 2.12. We note that, in these three observation operators, fi, fr, and fl have the
same sensitivity to hi, but sensitivities to hs and c differ. The sea ice component of the
MPIOM uses constant densities of snow, sea ice, and water. As simulated freeboard
is relatively sensitive to densities of snow and sea ice, we have, however, included
these quantities as parameters of the observation operator in the control vector (see
Section 2.2.3). For ρi=910.0kg/m3, ρs=330.0kg/m3, ρw=1025.0kg/m3, the sensitivity
of fi, fr, and fl to a change in hi/c is a = 0.112, and the respective sensitivities to a
change in hs/c are b = −0.322, b = −0.542, and b = 0.678.

Figure 2.14: Uncertainty ranges [m] and spatial coverage for April 2015: CryoSat-2
RFB (top left), a CRISTAL-like SND product (top right), a CIMR-like
SND product (bottom left), a product from a reanalysis based approach
(bottom right)

Table 2.4 provides an overview on the products we assess and Figure 2.14 shows
product uncertainties and coverage. As mentioned, out of the AWI products derived
from CryoSat-2 the RFB product showed the highest benefit on forecast performance
in a preceding QND study (Kaminski et al., 2018) and we thus use this product as the
starting point for our assessments. It is provided on the 25 km Equal-Area Scalable
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Earth Grid (EASE) 2.0 grid, with per-pixel uncertainty ranges, which correspond to
the random component of the uncertainty specified for the SIFB product (for details
see Hendricks et al., 2016, and references therein). It is crucial for the uncertainty
estimate to include any source of uncertainty in the penetration depth of the radar
signal. Recall, that we assume uncertainties to be uncorrelated in space. With two
satellites in orbit, S3 provides a higher sampling frequency than CryoSat-2. Assuming
4 times more independent measurements than CryoSat-2 over the Arctic, we use the
CryoSat-2 RFB uncertainty divided by a factor of

√
(1/4) = 0.5 as uncertainty estimate

for an April S3 RFB product with a pole hole north of 81.5N.
The QND study by Kaminski et al. (2018) has also indicated good complementarity

with SND products. We hence constructed three hypothetical SND products for April
2015. The first one is intended to look like an SND product to be expected from
the Copernicus HPCM CRISTAL. We assume an orbit like that of CryoSat-2 with a
pole hole north of 88N and retrievals on the 25 km EASE grid wherever simulated SIC
exceeds 70%. Following Lawrence et al. (2018) we assume an uncertainty of 8 cm for the
monthly product. The second SND product is intended to look like an SND product
to be expected from the Copernicus HPCM CIMR. We assume retrievals on the 25
km EASE grid wherever simulated SIC exceeds 70%. Following Braakmann-Folgmann
and Donlon (2019) (including the information provided by the L-Band radiometer) we
assume an uncertainty of 4 cm for the monthly composite. The third SND product is
intended to look like an SND product to be expected from a modelling approach that
combines an ice drift product with output from a numerical weather prediction model
to calculate the temporal evolution of SND. We assume the product to be available
on the 25 km EASE grid wherever simulated SIC exceeds 1%. Following Petty et al.
(2018) we assume an uncertainty of 8 cm for the monthly composite product.

A CRISTAL SND product would be derived from the difference of two freeboard
measurements onboard the same platform. An alternative is the direct assimilation
of two freeboard products into the model. For this purpose we constructed an LFB
product that looks like an ICESat 2 product. Following Farrell et al. (2009) we assume
an uncertainty of 2 cm for the monthly composite product.

A further observable we evaluate is SST (see Figure 2.15). Our first product is derived
from the product retrieved by OSI-SAF from infrared measurements (Eastwood , 2011a),
which cannot penetrate clouds. The OSI-SAF product is available every 12 hours on a
5 km grid, and we assume a composite for the first week of April is available for each
MPIOM grid cell north of 40N with simulated SST > -1 K, for which at least 25% of
the potential samples are available. For this composite we assume an uncertainty of
0.5 K. Our second product is intended to look like an SST product to be expected
from the Copernicus HPCM CIMR. We assume a composite for the first seven days in
April has an uncertainty of 1 K and is available on a 12.5 km EASE grid, for each grid
cell north of 40N with simulated SST > -1 K.
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Figure 2.15: Uncertainty ranges [K] and spatial coverage of SST products for April 1-
7, 2015: Derived from OSI-SAF products based in infrared measurements
(left), a CIMR-like product (right)

Table 2.4: Overview on data sets used for assessments.

Product Grid Coverage Uncertainty
RFB (CS-2) 25 km EASE product product
RFB (S3) 25 km EASE as RFB(CS-2), < 81.5N (pole hole) 0.5 * RFB(CS-2)
SND (CRISTAL) 25 km EASE SIC > 70%, < 88N (pole hole) 0.08 m
SND (CIMR) 25 km EASE SIC > 70% 0.04 m
SND (reanalysis) 25 km EASE SIC > 1%, 0.08 m
LFB (ICESat-2) 25 km EASE SIC > 70% 0.02 m
SST (IR) MPIOM grid SST > -1 C, > 25% sampled, > 40N 0.5 K
SST (CIMR) 12.5 km EASE SST > -1 C, > 40N 1.0 K
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2.2.6 CO2 Data sets and observation operators

Figure 2.16: Coverage of Atmospheric CO2 data sets. Networks of 15 (top left) and
141 (top right) sites providing continuous samples and simulated random
(bottom left) systematic (bottom right) error of one Copernicus HPCM
CO2M satellite for June 1, 2008, aggregated to a 0.5◦ grid.

Table 2.5: Overview on atmospheric CO2 data sets used for assessments.

Description Coverage Uncertainty
surface network 15 sites see Figure 2.16, top left 1 ppm
surface network 141 sites see Figure 2.16, top right 1 ppm
surface network 15 sites plus radiocarbon see Figure 2.16, top left 0.5 ppm
surface network 15 sites see Figure 2.16, top left 0.5 ppm
one CO2M satellite see Figure 2.16, bottom see figure

An overview of the atmospheric CO2 data we use for our assessments is provided in
Table 2.5. The starting point is the in situ network consisting of the monitoring sites
providing continuous samples to the Jena CarboScope system Rödenbeck (2005). To
explore the effect of an extended network providing continuous samples, we assume
those were available at all 141 flask sampling locations of NOAA’s Earth System
Research Laboratory (www.esrl.noaa.gov/gmd/ccgg/trends/). For both networks we
use an uncertainty of 1 ppm for the daily means. Next, we equip the 15 site network
with the capability to also measure radiocarbon, a tracer that separates fossil fuel
from natural carbon emissions (Levin et al., 2003; Rayner et al., 2010) To explore the
sensitivity to the observational uncertainty, we also conduct an assessment for the
network of 15 sites with an observational uncertainty of 0.5 ppm.
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Simulated random and systematic errors for the Copernicus HPCM CO2M were
provided by the University of Bremen. These were produced by applying error
parameterisation formulas (EPFs) (Buchwitz et al., 2013) for each individual satellite
footprint (ground pixel) based on variables characterising the viewing and
illumination geometry (e.g. solar zenith angle), surface (e.g. surface albedo) and
atmospheric properties (e.g. cirrus and aerosol optical depth). A swath width of 250
km is assumed. Random and systematic errors were then gridded to 0.5◦ grid
resolution for each day in 2008 (typically) by averaging the relevant values of all
individual pixels of the image contained in a 0.5◦ grid cell for a given day.

Our observation operator for XCO2 is the global atmospheric transport model TM3
(Heimann and Körner , 2003), operated with ≈4◦× 5◦ horizontal resolution on 19
vertical levels. Similar to Kaminski et al. (2010), we use pre-computed response
functions (observational Jacobians) that resolve monthly flux impacts in the same
month as the observation and up to three months before an observation on the full
model grid. Monthly flux impacts between four and 47 months before an observation
are assumed to be uniform within a set of twelve latitudinal bands, each about 16◦

wide. For fluxes more than 47 months before an observation, we use a globally
uniform response. The model is run with meteorological driving fields taken from the
NCEP reanalysis (Kalnay et al., 1996). To simulate observations by the station
network we sample the daily mean at the grid cell and vertical model transport layer
in which the respective site is located. XCO2 corresponding to CO2M observations is
calculated as the column-average of CO2 with vertical weighting depending only on
layer mass (corresponding to a uniform averaging kernel).
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2.3 Target and observational Jacobians

The evaluation of Equation (2.1) and Equation (2.3) requires a target Jacobian N′ for
each target quantity and an observational Jacobian M′ for each of the observational
products we assess (Table 2.4). This subsection first describes the computation of these
Jacobians and then discusses them. For a given product, the observational Jacobian is
computed in two steps. The first step performs the following actions: a reference run
is performed using the prior control vector x, the input variables to the observation
operator are stored over the observational period, aggregated to the model grid, and
the observation operator is applied to derive the observation equivalent M(x) on the
space-time grid of the observational product. In the second step, for each component
of the control vector the following procedure is applied: A sensitivity run is performed
with a control vector x + pi that is identical to the prior control vector but with the
i-th component changed by a perturbation εi, and an observation equivalent M(x+pi)
is computed in the same way as for the reference run. The Jacobian column is then
computed as σi(M(x + pi) −M(x))/εi where σi is the prior uncertainty of xi. As a
consequence of the normalisation by the prior uncertainty, each row in the Jacobian
has the same unit as the respective observation. For a given product, column i of the
corresponding observational Jacobian quantifies the sensitivity of the model-simulated
equivalent to that product with respect to a change of the i component of the control
vector xi by one standard deviation (see Table 2.1 for the value).

For any given product the dimension of the observational Jacobian is the product
of the dimension of the control space and the grid size of the observational product.
As an example, Figure 2.17 displays the row of the Jacobians for April means of SIT,
SIFB, RFB, LFB, and SND over a single point in space indicated by the black dot
(and by the black cross on Figure 2.3).

The SIT sensitivity is dominated by the model’s initial SIT in control region 6 (black
bars in Figure 2.17) but shows also considerable sensitivities to the initial SIC, the
initial SND, the initial ocean temperature (TEMP) and the zonal wind stress (WIX).
The negative sensitivity to SIC in that region is caused by two mechanisms. The first
mechanism is expressed by Equation (2.11): The observation hi,eff is the effective SIT
(thickness averaged over the ice-covered grid cell) and is reduced if the initial SIC
is increased (and vice versa) because the model conserves the total sea ice volume.
The second mechanism is related to sea ice growth which depends on the open water
fraction, i.e. more (less) sea ice can grow if the SIC is reduced (increased). The small
negative sensitivity of SIT to SND is caused by the strong insulation effect of snow,
which hampers the growth of sea ice (or fosters the growth if SND is reduced). The
physical process behind the small negative sensitivities on the initial ocean temperature
needs no further explanation; we recall, however, that, in the presence of sea ice, the
control variable relates to a temperature change below the second model layer (at 17m
depth). The negative sensitivity with respect to the zonal wind stress (WIX) mirrors
less advection of thick sea ice originating from the Beaufort Gyre. WIX is positive for
eastward wind stress. A positive sensitivity to WIX is most distinct in region 6 (but
also evident in regions 7 and 8) and slows down the Beaufort Gyre which advects less
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sea ice into the target region (sea ice behaves, at least in April and May, to a large
extent like a rigid body, i.e. a change in regions 7 and 8 impacts almost instantaneously
on the target regions) resulting in a negative sensitivity. The SIT sensitivities on model
parameters (Figure 2.17 are very small compared to the sensitivities on the initial state
or the atmospheric boundary conditions, as the short integration time (we sample the
April mean of a model simulation starting on April 1) restricts the impact of the
parameters.

The various freeboard products exhibit high sensitivity to initial SIT and SND
(orange, red, and green bars in Figure 2.17 and enlarged in Figure 2.17). As SIT
enters all freeboard observation operators in the same way (Section 2.2.5), the
freeboard sensitivity to April mean SIT is equal for all products, which also renders
their sensitivity to initial SIT almost equal. The LFB sensitivity on the initial SND is
positive (LFB is the freeboard at the top of the snow layer) while the sensitivity of
the RFB and SIFB is negative because an increased SND will reduce the RFB and
SIFB through the increased weight on the ice floe (see Figure 2.12). Due to the
definition of the observation operator for RFB (Equation (2.15)) its sensitivity to
initial SND is larger than that of the SIFB (Section 2.2.5). The sensitivity of the
freeboard products (yellow, red, and green bars) with respect to the parameters of
the sea ice and ocean model is low. The impact of the sea ice density on the
respective observation operators (Equation (2.13) to Equation (2.16)) is high, though,
while sensitivity with respect to the snow density is much lower (because the sea ice
thickness is much larger than the SND at the observational point). The SND shows
only considerable sensitivity to the initial SND in control region 6 and some minor
positive sensitivity with respect to the precipitation in the same region.

For the visualisation of the observational Jacobian for SST observations the point
we have selected for the freeboard and SND observations is not suitable, because SST
observations are only made over open water. Figure 2.18 shows the observational
Jacobian for an SST observation (mean over the first seven days in April) west of
Greenland. The constraint by this observation close to the ice edge is confined to the
process parameters and the initial and boundary conditions over Region 9, in which
the point is located. The process parameters with the highest impact are hiccpp,
hibcc, and cw. We note that the wind direction is such that it pushes the ice away
from the observational location close to the west coast of Greenland, and recall the
formulation (Hibler , 1979) of the ice strength in Equation (2.6). A reduction in the
ice strength parameter hicpp (pstar) increases the mobility of the ice. An increase of
parameter hibcc (cstar) has the same effect. Higher ice mobility yields higher SST at
the observational location. Increased drag cw also pushes the ice further west. A
reduction in initial SIT, SIC, or SD reduces the insulating effect and yields to
increased warming in region 9. We recall that initial temperature and salinity refer to
the entire water column. While the impact of initial temperature is obvious, the
change in initial salinity impacts the stratification of the water column, and the
resulting geostrophic circulation changes SST. The impact of atmospheric
temperature is obvious. An increase of the wind field components WIX and WIY
increases the wind component from the Northeast, which hampers the inflow of warm
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water from the north Atlantic and thus reduces SST.
Likewise we computed target Jacobians N′ for each of the six target quantities (SIV

and SNV each over 5 regions) described in Section 2.2.2. Each target quantity is a scalar
and thus the Jacobian has one entry for each component of the control vector. As an
example Figure 2.19 displays the Jacobians for SIV and SNV (on May 28) over the
Outer New Siberian Islands (ONSI) region. The first point to note is that sensitivities
of regional SIV and SNV to the control vector differ, so an observation must constrain
different components of the control vector to perform well for one or the other target
quantity.

SIV over the ONSI region is highly sensitive to initial SIT over control regions 5 and 6
(Figure 2.20) which at least partly overlap with the target area. As the SIT observation
and due to the same mechanisms discussed above, the SIV target quantity also exhibits
a negative sensitivity to the initial SIC, SND, and zonal wind stress. It is interesting
to note that SIV is also sensitive to initial and boundary conditions over more remote
control regions. For example, it exhibits a positive sensitivity to the initial SIT in
the control regions 1 and 7 from which thick sea ice is advected into the target region
during the period from April 1 to May 28. This also explains the negative sensitivity
to the zonal wind stress in region 7 and the meridional wind stress in region 1: For
sufficiently high SIC the sea ice almost behaves as an incompressible fluid allowing
even for a sensitivity to wind stress changes in very remote control regions, e.g. the
negative sensitivity to the zonal wind stress in region 8. The positive sensitivity to
the zonal wind stress in region 1 (with thick ice) may be less obvious, as it follows the
deflection of ice drift by about 20◦ to the right. The largest SIV sensitivity to model
parameters (Figure 2.20) is found for the snow albedo of freezing conditions (albsn),
but still that sensitivity is low compared to the sensitivity with respect to the initial
state and atmospheric boundary conditions.

SNV shows particularly high sensitivity to the initial SND but also considerable
sensitivity with respect to the precipitation and air temperature in region 6. The
largest model parameter sensitivity is found for the snow albedo for melting conditions:
Increasing the snow albedo will reduce the melting.
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Figure 2.17: The sensitivities of the respective EO product to the control vector
(“observational Jacobians”) for April means of LFB (orange bars), RFB
(red bars), SIFB (green bars), SIT (black bars) and SND (cyan bars) over
a single point indicated by the black dot (and by black cross on Figure 2.3).
The observational Jacobians with respect to the process parameters are
shown in the left middle panel. The other panels show the observational
Jacobians with respect to the initial and forcing fields for each control
region (see Table 2.1 for an explanation of the abbreviations).
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Figure 2.18: The sensitivities of SST to the control vector (“observational Jacobians”)
for a mean SST over the first seven days in April over a single point
indicated by the black dot (and by black cross on Figure 2.3). The
observational Jacobian with respect to the process parameters are shown
in the left middle panel. The other panels show the observational Jacobian
with respect to the initial and forcing fields for each control region (see
Table 2.1 for an explanation of the abbreviations).
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Figure 2.19: As Figure 2.17 but for the sensitivities of the sea ice (SIV) and snow (SNV)
volume over the target region Outer New Siberian Islands (ONSI) on the
control vector (“target Jacobians”).
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Figure 2.20: An excerpt of Figure 2.19 for the target Jacobian (top) in target region
6 (“East Siberian Sea” - left) and region 5 (“Laptev Sea” - right) and
(bottom) for the model parameters.
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For the sea ice-ocean system, our assessments are based on the products shown in
Table 2.4. We conducted assessments for the eight cases listed in Table 4.1 in terms of
their impact on forecasts of SIV and SNV for the target regions listed in Section 2.2.2.

First we compare the performances of the RFB product from CryoSat-2 and of
an S3-like RFB product (rows 4 and 5 of Tables 4.1 and 4.2)). Next, we assess the
combination of the CryoSat-2 RFB product with three SND products described in
Section 2.2.5:

1. CIMR-like,

2. CRISTAL-like,

3. Reanalysis-like

and contrast this with the combination of CryoSat-2 RFB with an ICESat-2 like LFB
product. For this set of assessments we prefer the CryoSat-2 product, because (unlike
our hypothetical S3 RFB product) the uncertainties are derived from real
observations. Next, we compare two SST products, one CIMR like product and one
product derived from infrared measurements. The reference for these assessments is a
case without observations. Row three (“prior”) shows the uncertainties in the target
quantities that result from the prior uncertainty in the control vector. As mentioned
in Section 2.2.2, our study year is 2015, and we have two different assimilation
windows. For freeboard/ice thickness/snow depth products we assimilate an average
field over April, followed by a four-week forecast. For SST we assimilate an average
field over the first week of April, followed by a seven-week forecast.

Another set of assessments addresses the constraint of different combinations of
atmospheric CO2 observations (Table 2.5) on land-based fossil fuel emissions in selected
Arctic countries. Our starting point is a network of 15 sites providing continuous in
situ samples. We then explore three ways of extending/improving this network. The
first is by equipping all sites of the NOAA ESRL network (currently providing flask
samples) by continuous in situ analysers. The second is by reducing the observational
uncertainty of the 15-site network from 1 ppm to 0.5 ppm. The third is by combining
the 15-site network with one CO2M satellite. In summary we perform four assessments
of atmospheric CO2:

1. 15-site in situ surface continuous sampling network

2. 141-site in situ surface continuous sampling network

3. 15-site in situ surface continuous sampling network with lower uncertainty

4. 15-site in situ surface continuous sampling network + one CO2M satellite
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We analyse the fossil fuel emissions for the period from June 1 to June 7, 2008 using
observations for the same period.
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4 Discussion of Assessment Results

4.1 Sea ice and Ocean Observations

This section presents the results of our assessments of sea ice and ocean observations.
As explained in Section 2.2.1 the uncertainty component from the model error σ(ymod)
in Equation (2.3) covers the residual uncertainty that remains with an optimal control
vector, i.e. it reflects uncertainty from uncertain aspects not included in the model error
and structural uncertainty reflecting wrong or missing process formulations. σ(ymod)
is model-dependent and is probably the most subjective component in the prior and
posterior uncertainties. σ(ymod) acts as an offset (for the respective variance) for all
cases, and reduces the contrast between the cases. As our assessments focus on the
differences between the cases, we exclude it from the target uncertainties in Table 4.1
and Table 4.2 and provide an estimate in the bottom row. This estimate (denoted by
σmod, relative) assumes a model that simulates the same SIV and SNV as our model

with an uncertainty of 10% for SIV and 30% for SNV. We use a higher uncertainty for
SNV because it has a stronger dependence on the surface forcing (mainly precipitation),
for which the temporal and small-scale spatial structures are not resolved in the control
vector.

We stress that, owing to the exclusion of model error (and biases in the observations)
for a given observational scenario our results (Table 4.1 and Table 4.2) show the upper
limit for the impact it can achieve. For example we assume that the penetration of
radar and laser signals is treated correctly. Also, as our reference is a prior case without
any observations, the impact of an observational data stream is much higher than in a
setup where it is added to an assimilation system that already assimilates a variety of
other data sets, as it is the case for the Copernicus systems described in Chapter 1.

Both RFB products (CryoSat 2 and Sentinel 3) provide strong constraints on
forecasts of SIV and SNV (see also Figure 4.1). S3 RFB performs slightly better, at
least for our target regions and variables. This means the reduced product
uncertainty (owing to the higher sampling frequency) of S3 overcompensates for the
larger pole hole. This does not only hold for the five target regions along the NSR
and Northwestern Sea Route but also for the Arctic as a whole (last column in
Table 4.1 and Table 4.2).

Adding SND products to the CS-2 RFB product achieves a significant performance
gain. Among the SND products, the CIMR-like product performs better than the
reanalysis-based product, i.e. the better precision overcompensates for the lower
spatial coverage. The reanalysis-based product in turn performs slightly better than
the CRISTAL-like product, owing to the better spatial coverage. Using instead of the
SND products an ICESat-2 like LFB product (in combination with CS-2 RFB) yields
the best performance. This can be attributed to two effects: The first is the assumed
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4 Discussion of Assessment Results

Table 4.1: Prior and posterior uncertainties of sea ice volume (SIV, columns 3-8)
respectively for five regions and the entire Arctic in km3. Columns 1 and
2 indicate products. The bottom row gives an estimate for the uncertainty
due to model error, i.e. the residual uncertainty with optimal control vector.

Product Product BAB BFS WLS ONSI ESS ARCTIC

prior - 113.7 327.9 136.5 131.6 289.6 2276.0
RFB CS-2 - 37.9 65.5 51.3 39.2 93.8 419.7
RFB S3 - 23.1 44.1 34.0 28.1 65.2 335.6
RFB CS-2 SND CIMR 11.8 27.4 4.3 5.9 19.7 111.3
RFB CS-2 SND CRISTAL 15.7 37.8 6.4 8.5 27.8 147.2
RFB CS-2 SND Reanalysis 14.6 36.1 6.2 8.0 25.9 128.6
RFB CS-2 LFB ICESat 5.7 13.1 2.1 2.7 9.1 63.3
SST CIMR - 63.1 275.1 129.8 122.5 264.6 1414.8
SST IR - 113.0 304.8 135.3 129.5 285.2 2171.7

σmod, relative - 18.2 81.4 48.7 70.8 165.9 1896.6

Figure 4.1: Assessment Results for RFB from CryoSat 2 and Sentinel 3. Prior and
posterior uncertainty ranges [km3]

higher precision (2 cm) compared to that in the SND products (4-8 cm). The other
effect is that LFB has a different sensitivity to the control vector than SND (see
Figure 2.17). To quantify the second effect, we compare with a previous study
(Kaminski et al., 2017a) that has evaluated the CS-2 RFB product in combination
with an SND product (the same coverage and accuracy as our LFB product) for our
target quantities along the NSR. For both SIV and SNV the performance was about
30% weaker than for our assessment here.
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4 Discussion of Assessment Results

Table 4.2: Prior and posterior uncertainties of snow volume (SNV, columns 3-8)
respectively for five regions and the entire Arctic in km3. Columns 1 and
2 indicate products. The bottom row gives an estimate for the uncertainty
due to model error, i.e. the residual uncertainty with optimal control vector.

Product Product BAB BFS WLS ONSI ESS ARCTIC

prior - 12.2 33.5 62.3 63.3 110.1 916.7
RFB CS-2 - 2.8 9.7 16.4 14.2 26.0 165.3
RFB S3 - 1.7 6.5 11.3 10.6 19.5 119.6
RFB CS-2 SND CIMR 0.6 2.5 4.0 4.1 7.9 45.6
RFB CS-2 SND CRISTAL 1.0 4.2 6.2 6.4 12.5 71.7
RFB CS-2 SND Reanalysis 0.9 3.9 6.0 6.2 11.9 67.2
RFB CS-2 LFB ICESat 0.4 1.5 1.6 1.7 3.3 23.1
SST CIMR - 11.9 33.1 62.1 62.9 109.4 867.0
SST IR - 12.2 33.4 62.3 63.2 110.0 911.5

σmod, relative - 0.2 1.1 10.2 11.4 5.3 506.3

Table 4.3: Uncertainty reduction relative to prior (see Equation (2.5)) of sea ice volume
respectively for five regions and the entire Arctic in %. Columns 1 and 2
indicate products.

Product Product BAB BFS WLS ONSI ESS ARCTIC
RFB CS-2 - 66.7 80.0 62.4 70.2 67.6 81.6
RFB S3 - 79.7 86.5 75.1 78.6 77.5 85.3
RFB CS-2 SND CIMR 89.7 91.6 96.8 95.5 93.2 95.1
RFB CS-2 SND CRISTAL 86.2 88.5 95.3 93.5 90.4 93.5
RFB CS-2 SND Reanalysis 87.2 89.0 95.5 93.9 91.1 94.3
RFB CS-2 LFB ICESat 95.0 96.0 98.4 98.0 96.9 97.2
SST CIMR - 44.5 16.1 4.9 6.9 8.7 37.8
SST IR - 0.6 7.0 0.9 1.6 1.5 4.6

SST observations provide almost no constraint on SNV, because of the insulating
effect from the sea ice below the snow. The SST constraint on SIV is small, except for
the target region BAB, which is closest to the ice edge in the observation period. The
slight constraint on the other target regions is due to constraints of the SST observation
on the global process parameters (Figure 2.18). CIMR outperforms IR in BAB, because
it provides much better coverage close to the region.

Differences between target regions in the performance of the same product are the
result of a complex interplay of the Jacobians N′ for the target regions and the product’s
constraint on the control vector quantified by C(x) (see Equation (2.3)). For each of
the target regions a different (combination) of control regions is most relevant: For
WLS this is control region 5 (not shown), for ONSI these are control regions 5 and 6
(Figure 2.19 and enlarged in Figure 2.20) and for ESS these are control regions 6 and
7 (not shown). BFS is different because, in contrast to the NSR regions, it contains a
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4 Discussion of Assessment Results

Table 4.4: Uncertainty reduction relative to prior (see Equation (2.5)) of snow volume
respectively for five regions and the entire Arctic in %. Columns 1 and 2
indicate products.

Product Product BAB BFS WLS ONSI ESS ARCTIC
RFB CS-2 - 76.6 71.1 73.6 77.6 76.4 82.0
RFB S3 - 86.0 80.6 81.9 83.3 82.2 86.9
RFB CS-2 SND CIMR 94.8 92.5 93.6 93.5 92.9 95.0
RFB CS-2 SND CRISTAL 91.5 87.4 90.1 89.9 88.7 92.2
RFB CS-2 SND Reanalysis 92.2 88.5 90.3 90.2 89.1 92.7
RFB CS-2 LFB ICESat 96.9 95.6 97.4 97.4 97.0 97.5
SST CIMR - 1.9 1.2 0.3 0.6 0.6 5.4
SST IR - 0.0 0.0 0.1 0.1 0.1 0.6

large fraction of multi-year ice. The particularity of BFS is the large fraction of open
water. The ability of a product to constrain a particular control region is determined
by the combination of the observational Jacobian of the product and the product
uncertainty (see Equation (2.1)).
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4 Discussion of Assessment Results

4.2 Atmospheric CO2

Figure 4.2: Posterior uncertainty (including atmospheric and other observational
constraints) of fossil fuel emission rates during first week of June 2008
for selected countries shown by their ISO codes in MtC/week (blue, red,
green, violet, and orange bars). 1/52 of the 2008 fossil fuel emission from
inventories (back bars).

Figure 4.2 quantifies the impact of the four observational scenarios defined in
Section 3 on the posterior uncertainty estimates of total land-based fossil fuel
emissions:

1. 15-site in situ surface continuous sampling network (blue bars)

2. 141-site in situ surface continuous sampling network (red bars)

3. 15-site in situ surface continuous sampling network also providing radiocarbon
samples (green bars)

4. 15-site in situ surface continuous sampling network with lower uncertainty (violet
bars)
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4 Discussion of Assessment Results

5. 15-site in situ surface continuous sampling network + one CO2M satellite (orange
bars)

The impact is quantified through the posterior uncertainties for the fossil fuel emissions
of selected Arctic countries over the period from June 1 to June 7, 2008. There is
typically no information from inventories on this time scale, which we could use as a
reference. Instead, as a reference, we show (black bars) the average 7-day fraction (i.e.
7/366) of the respective annual fossil fuel emissions provided by the IEA (International
Energy Agency , 2011) for the (leap) year 2008.

For the 15-site network scenario, the posterior uncertainty is well above the
reference for all countries. Compared to this scenario, the extension to the 141-site
scenario achieves a substantial uncertainty reduction over Canada, Norway and
Sweden, and a modest uncertainty reduction over Denmark and Finland, and a small
uncertainty reduction (about 3%) over Island. Adding radiocarbon observations to
the 15-site network or reducing the observational uncertainty for the 15-site network
by a factor of two has very little effect. These scenarios are inferior to the 141-site
scenario. The scenario that combines the 15-site network with one CO2M satellite
achieves a much better performance than the 141-site network, except over Island,
where CO2M performs only about 1% better than the 141-site surface network.
Posterior uncertainties are well below the reference (average 7-day fraction of annual
total) for Canada, and below the reference for Finland, Norway, and Sweden. They
are just below the reference for Denmark, and well above the reference for Island.
Small emissions are generally more difficult to detect with atmospheric measurements
than large emissions. Also, with our relatively coarse (global scale) atmospheric
transport simulation we tend to underestimate the performance over spatially small
countries such as Island. In addition, small isolated countries may also suffer more
from cloud contamination. We note, however, that the measurements by CO2M rely
on reflected sunlight, i.e., unlike the in situ surface network, it will provide much
lower coverage in winter.
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